УДК 511

И.В. Поликанова

ОТОБРАЖЕНИЯ, ОДНОРОДНЫЕ ОТНОСИТЕЛЬНО ДЕЙСТВИЙ ГРУППЫ

Аннотация. В работе дается определение однородного относительно действий группы отображения, приводятся примеры таких отображений.

Ключевые слова: однородное отображение, действие группы на множестве.

I.V. Polikanova

MAPS WHICH ARE HOMOGENEOUS RESPECT TO ACTIONS OF THE GROUP

Abstract. The paper gives a definition of the map, which is homogeneous with respect to actions of the group.

Key words: homogeneous map, action of the group on the set.

Обозначения для множеств чисел:

N — натуральных; Z — целых; R — действительных; R^+ — положительных действительных; R^* = $R^- \cup R^+$.

На множестве X задано действие мультипликативной группы G, если задано отображение $\theta: G \times X \to X$ такое, что в обозначениях $\theta(g,x) = g * x$ справедливо:

- 1) (gh) * x = g * (h * x),
- 2) e * x = x, где e единица группы G.

Будем говорить, что группа G действует на множестве Y коммутативно, если для любых $g, h \in G, y \in Y$ справедливо: (gh) * y = (hg) * y.

Очевидно, что коммутативная группа всегда определяет коммутативное действие. Однако некоммутативная группа также может определять коммутативные действия. Например, полная линейная группа GL_k преобразований k-мерного векторного пространства V^k допускает 2 вида действий на R^* ([1], с. 216): для матрицы $A \in GL_k$, $\lambda \in R$,

$$A *_{\lambda} t = |\det A|^{\lambda} t, \tag{1}$$

$$A \bullet_{\lambda} t = \delta_A \left| \det A \right|^{\lambda} t, \tag{2}$$

где $\delta_A=1$ при $\det A>0$, и $\delta_A=-1$, если $\det A<0$.

Действительно:

 $AB *_{\lambda} t = |\det AB|^{\lambda} t = (|\det A| |\det B|)^{\lambda} t = (|\det A|^{\lambda} |\det B|^{\lambda}) t = |\det A|^{\lambda} (|\det B|^{\lambda} t) = A *_{\lambda} (B *_{\lambda} t).$

Для формулы (2) условие 1) действия проверяется аналогично, если учесть, что $\delta_{AB} = \delta_A \delta_B$. Для единичной матрицы E имеем

 $E *_{\lambda} t = E \bullet_{\lambda} t = |\det E|^{\lambda} t = 1 \cdot t = t$. Проверили, что формулы (1), (2) определяют действия.

Очевидно эти действия коммутативны, хотя группа GL_k некоммутативна.

Кроме того, всякая группа G допускает mpu- euaльное deŭcmeue на любом множестве:

$$g*y=y$$
 для любых $g\in G,\,y\in Y,$

также коммутативное.

Предложение 1. Если группа G действует на множестве Y коммутативно, то

$$(qh)^n * y = (q^n h^n) * y$$

для любых $g, h \in G, y \in Y, n \in Z$.

Доказательство. Докажем утверждение методом математической индукции сначала для натуральных степеней n. При n=1 утверждение тривиально. Пусть оно верно для степени $n-1\in N,$ т. е.

$$(gh)^{n-1} * y = (g^{n-1}h^{n-1}) * y$$

для любых $g,h\in G,y\in Y$. Принимая во внимание коммутативность действия группы G на Y, получим: $(gh)^n*y=[(gh)^{n-1}gh]*y=(gh)^{n-1}*[(gh)*y]=[(gh)^{n-1}[(hg)*y]=[(gh)^{n-1}(hg)]*y=[(g^{n-1}h^{n-1})(hg)]*y=[(g^{n-1}h^n)g]*y=[g(g^{n-1}h^n)]*y=(g^nh^n)*y.$

Таким образом, формула верна и для степени n, а значит, для всех натуральных степеней. Теперь докажем равенство

$$(qh)^{-n} * y = (q^{-n}h^{-n}) * y$$

для всех натуральных n и нуля. При n=0 утверждение тривиально. Пусть оно верно для степени $n-1\in N$, т.е.

$$(gh)^{1-n} * y = (g^{1-n}h^{1-n}) * y$$

для любых $g,h \in G, y \in Y$. В силу коммутативности действия группы G на Y имеем: $(gh)^{-n} * y = [(gh)^{1-n}(gh)^{-1}] * y = (gh)^{1-n} * [(gh)^{-1} * y] = (g^{1-n}h^{1-n}) * [(gh)^{-1} * y] = [g^{1-n}h^{1-n}(gh)^{-1}] * y = (g^{1-n}h^{1-n}h^{-1}g^{-1}) * y = [(g^{1-n}h^{-n})g^{-1}] * y = [g^{-1}(g^{1-n}h^{-n})] * y = (g^{-n}h^{-n}) * y.$

Формула верна и для $n \in N$. Предложение доказано полностью.

Предложение 2. Если группа G действует на множестве X коммутативно, то для всякого $n \in Z$ формула

$$g *_n x = g^n * x \tag{3}$$

также определяет действие на X.

Доказательство.
$$g *_n (h *_n x) = g^n *_n (h^n *_n x) = (g^n h^n) *_n x = (gh)^n *_n x = (gh)^n *_n x,$$
 $e *_n x = e^n *_n x = e *_n x = x.$

При доказательстве мы воспользовались предложением 1.

Пусть определены действия группы G на множествах X и Y, обозначаемые соответственно \circ и *. Отображение $f: X \to Y$ назовем однородным степени n относительно действий группы G на множествах X и Y, если

$$(\forall g \in G)(\forall x \in X)(\ f(g \circ x) = g^n * f(x)\). \tag{4}$$

Здесь $n \in \mathbb{Z}$, а в некоторых случаях $n \in \mathbb{R}$. При n = 1 условие (4) определяет эквивариантное отображение или комитант.

Примеры.

- 1. Пусть $f: R^n \to R$ функция. Если действия группы R^* на R^n и R определены формулами: $t \circ x = tx$, t * y = ty для $t \in R^*$, $x \in R^n$ и $y \in R$, то условие (4) приводит к известному понятию однородной функции. Определив аналогично действия группы R^+ на R^n и R, получим понятие положительно однородной функции ([2], c.1174).
- **2.** Инвариантом группы G, действующей на X, называется отображение $f:X\to Y$, удовлетворяющее условию

$$(\forall g \in G)(\forall x \in X)(f(g \circ x) = f(x))$$

- ([3], с. 526). Может рассматриваться как однородное отображение любой степени относительно действий группы G, если действие \ast тривиально.
- 3. Понятие комитанта и инварианта восходит к классической теории инвариантов, в которой $G = GL_k$, а X, Y пространства тензоров, на которых G действует естественным образом, f эквивариантное полиноминальное отображение X в Y ([3], с. 980).

Отображение $f: \prod V^k \to R^*$, называется ([2], с. 216 -218):

1) инвариантом, если

$$f(Ax) = f(x),$$

2) осевым или аксиальным инвариантом, если

$$f(Ax) = \delta_A f(x),$$

3) псевдоинвариантом веса λ , $\lambda \in R$, если

$$f(Ax) = \left| \det A \right|^{\lambda} f(x),$$

4) осевым псевдоинвариантом веса $\lambda, \lambda \in R$, если

$$f(Ax) = \delta_A \left| \det A \right|^{\lambda} f(x),$$

для всех $x \in \prod V^k$ и всех $A \in GL_k$, Ax – произведение матрицы A на каждую компоненту мультивектора x.

Как видим, эти понятия соответствуют понятиям однородных отображений степени 1 относительно действий группы GL_k на R^* , определенных так: $A\circ x=Ax$, а $A*x=A*_\lambda x$ в первом $(\lambda=0)$ и третьем $(\lambda\neq 0)$ случаях и $A*x=A\bullet_\lambda x$ во втором $(\lambda=0)$ и четвертом $(\lambda\neq 0)$ случаях.

Псевдоинвариант веса $n \in N$ может рассматриваться и как однородное отображение степени n, если группа GL_k действует на R^* посредством отображения $*_1$, определенного формулой (1). Действительно, $A *_n f(x) = |\det A|^n f(x) = |\det A^n| f(x) = A^n *_1 f(x)$.

4. Обобщением последнего замечания служит следующий факт: если действия группы G на множествах X и Y обозначены соответственно \circ и \ast , и группа G действует на X коммутативно, то из эквивариантности отображения $f: X \to Y$, следует его однороность степени n относительно действия \circ_n на X и прежнего действия группы G на Y:

$$(\forall g \in G)(\forall x \in X)(f(g \circ x) = g * f(x)) \Rightarrow (\forall g \in G)(\forall x \in X)(f(g \circ_n x) = g^n * f(x)).$$

И наоборот, если отображение $f: X \to Y$ однородно степени n относительно действий \circ и * группы G на X и Y соответственно, причем действие группы G на Y коммутативно, то оно эквивариантно относительно действий \circ и $*_n$ группы G на X и Y:

$$(\forall g \in G)(\forall x \in X)(f(g \circ x) = g^n * f(x)) \Rightarrow (\forall g \in G)(\forall x \in X)(f(g \circ x) = g *_n f(x)).$$

5. Пусть φ - гомоморфизм группы G_1 в группу G_2 . Отображения

$$g \circ x = gx, \ g \in G_1, \ x \in G_1,$$

 $g * y = \varphi(g)y, \qquad g \in G_1, \ y \in G_2,$

определяют действия группы G_1 на G_1 и G_2 , относительно которых отображение φ является однородным степени 1:

$$\varphi(g \circ x) = \varphi(gx) = \varphi(g)\varphi(x) = g * \varphi(x).$$

6. Пусть группа G действует сама на себе внутренними автоморфизмами:

$$g * x = gxg^{-1}, x, g \in G.$$

Тогда отображения $\varphi_n: G \to G$, определенные формулой $\varphi_n(x) = x^n, n \in Z$, являются однородными степени 1 относительно действия группы G. Действительно: $\varphi_n(g*x) = \varphi_n(qxq^{-1}) = (qxq^{-1})^n = qx^nq^{-1} = q*\varphi_n(x)$.

7. Если коммутативная группа G действует сама на себе правыми сдвигами g*x=gx, сов-

падающими (ввиду коммутативности G) с левыми сдвигами g*x=xg, то относительно этого действия в обоих случаях на G отображение $\varphi_n(x)=x^n$ является однородным степени n. В самом деле: $\varphi_n(g*x)=\varphi_n(gx)=(gx)^n=g^nx^n=g^n*\varphi_n(x).$

8. Если группа G (необязательно коммутативная) действует сама на себе двояко — левыми сдвигами $g*_l x = gx$ и правыми сдвигами $g*_r x = xg$, то относительно этих действий, рассматриваемых в любом порядке, отображение $\varphi_{-1}(x) = x^{-1}$ является однородным степени -1. Убедимся в этом: $\varphi_{-1}(g*_l x) = \varphi_{-1}(gx) = (gx)^{-1} = x^{-1}g^{-1} = g^{-1}*_r \varphi_{-1}(x)$. Аналогично проверяется, что $\varphi_{-1}(g*_r x) = g^{-1}*_l \varphi_{-1}(x)$.

Библиографический список

- 1. Ефимов, Н.В. Линейная алгебра и многомерная геометрия / Н.В. Ефимов, Э.Р. Розендорн. М. : Наука, 1970.-528 с.
- 2. Математическая энциклопедия / гл. ред. И.М. Виноградов. – М. : Советская энциклопе-

3. Математическая энциклопедия / гл. ред. И.М. Виноградов. – М. : Советская энциклопедия, 1979. – Т. 2 (Д-Коо.). – 1104 с. : ил.